ToB营销需解析产品关联性

管理员2022-06-02 12:07
ToB营销需解析产品关联性

判定核心产品后,就应该解析核心产品和其他产品之间是否有关联。有联系是普遍存在的,ToB 营销可以通过解析产品关联性,找到产品解决方案设计维度。

一方面,我们通过多个不同功能的产品来组成垂直或者横向的完整业务场景解决方案或者行业解决方案,进行产品的售卖;比如说企业 ToB 营销路径,一般会从用户行为分析开始,然后自动化营销、个性化推荐、个性化预测这样子的线性演进流程;或者企业上云路径,一般从云服务器开始,然后在研发运维场景围绕容器或者中间件的相关产品进行横向展开。

那么,想要使得产品符合客户的业务发展路径,就需要产品经理、解决方案架构师针对特定行业或者业务场景,将行业理解体现在产品规划上,并将之设置成产品,从而进行逐一地实现;或者以解决方案形式将横向或者存在递进关系的产品进行组合,加强产品关联度,并通过各种市场行为进行 ToB 营销。

另一方面,虽然我们可以通过产品规划以及设计解决方案加强产品关联度,但由于实际使用者或者企业所处阶段、使用情况、业务视角不同,用户在实际使用过程中可能使用的产品与我们所预估的产品组合不尽相同。

以数据分析产品举例,当客户创建超过一定数量的用户分群后,他对于分群运营的需求逐渐提升,那么我们可能认为为客户推荐相关个性化自动营销产品可能是一个非常好的时机;或者,当客户建立了多个单独的事件分析图表,那么推荐相关漏斗分析模型或者留存分析模型,也许是他正在计划的下一步。但也有可能,客户的需求就是到此为止,不会有更深的业务需求。

虽然凭借行业经验,我们可以推测出客户进行交叉组合购买的部分可能,但实际上客户需要的并不止这些,抑或我们在进行主观推断过程中存在偏差。

那么,为了更有效的进行验证,这就需要进行数据挖掘。这里我们可以借鉴关联推荐的相关规则,简单讲解一下关联推荐,关联推荐具有三个核心数据:支持度,置信度,提升度。

支持度:衡量某一关联的应用场景的多少(换成人话:关联组合出现的频次);

置信度:衡量某一关联在应用场景的占比(换成人话:关联组合的条件概率);

提升度:衡量某一关联推荐的应用的好坏(换成人话:组合推荐购买某产品概率/直接购买某产品的概率)。

一个有效的简单关联规则应具有较高的置信度以及较高的支持度。如果规则的支持度较高,但置信度较低,则说明规则的可信度差;如果规则的置信度较高但支持度较低,则说明规则的应用机会很少,一个置信度较高但普遍性较低的规则并没有太多的实际的应用价值。

ToB 营销可以快速的将不同产品之间的关联性挖掘,在相关数据挖掘以后,我们便能得到相关产品的关联性,也就清楚的知道哪些产品更适合搭配销售。

https://www.huiju.cool/